
REFACTORING THE DATA 
PROJECTION STORE
by Balamurali Srinivasan

Resource Inef�iciency: The pre-cooked food might not be consumed entirely, 
leading to potential wastage. Additionally, the chefs have to allocate resources and 
space for storing and managing multiple batches of food.

iGTB's Move to Kappa Architecture

Transitioning to the Kappa approach, we visualised data as an uninterrupted 
stream, doing away with separate processing layers. This data stream's 
introduction brought agility to our system, simpli�ied our stack, and allowed for:

“This transition offers a tremendous advantage as data is ingested from 
various sources”

• Uni�ied Data Architecture: We started treating all data, whether batch or 
real-time, as a continuous stream

• Streamlined Processing Logic: Adapting to Kappa led us to rewrite processing 
logic to suit streaming

• Direct Data Integration: Most batch layers were phased out, with data 
streamed directly into a uni�ied pipeline

• Observability: With the advent of the cloud paradigm, having real-time event 
monitoring and observability became critical, leading to continuous 
performance metrics, ensuring peak ef�iciency and scalability

Where Are We Today?

The Projection Store concept involves storing normalised and de-normalised data 
in a single database, allowing users to access their transactions and navigate 
accounts effortlessly.

“Shift from the Lambda to Kappa architecture signi�icantly improved 
resources ef�iciency”

By storing both forms of data, we achieve a balance between data integrity and 
query performance. Normalised data ensures consistency and reduces 
redundancy, while de-normalised data speeds up data retrieval and enables faster 
queries. With Projection Store, we strike a harmonious chord between data 
normalisation and de-normalisation, providing the best of both worlds. In the
world of event processing, intellect has moved most of its signi�icant architecture 
products to eMACH.ai

large batches, with one team preparing and another serving the dishes. Though 
this ensures everyone is fed, it's in�lexible. Making any changes can cause delays, 
waiting for the next batch.

Kappa Architecture: Here, there's a constant �low of food prep. Chefs cook in 
real-time, directly serving fresh dishes to diners. This allows instant adaptation to 
any menu changes or last-minute requests.

Both styles make sure everyone gets their meal, but their operational implications 
are starkly different.

The separate teams of chefs and servers follow a predetermined plan for cooking 
and serving food.

Both approaches ensure nobody goes away hungry, the way it is realised in 
Lambda and Kappa have a lot of operational implications.

“Moving to Kappa Architecture eliminates the need for separate batch and 
real-time processing layers”

Kappa

Agility and Customisation: With the ability to cook and serve in real-time, the chefs 
can adapt to changes and additions on the spot. They can accommodate different 
dietary preferences, adjust �lavours, or even create personalised dishes based on 
speci�ic guest requests. This �lexibility enhances the overall dining experience and 
guest satisfaction.

Reduced Waste: Since the food is prepared in smaller portions as needed, there is 
less chance of excess food going to waste. The chefs can focus on optimising 
ingredient usage and avoiding unnecessary leftovers.

Fresher and Timely Service: By eliminating the need for pre-cooked batches, the 
Kappa approach ensures that the food is served immediately after it is cooked. 
This results in fresher and hotter meals being served to the guests, enhancing the
overall quality of the dining experience.

Real-time Adjustments: The chefs can incorporate feedback from guests and make 
immediate adjustments to enhance the taste, and presentation, or even introduce 
new dishes. This enables continuous improvement and keeps the dining 
experience dynamic and engaging.

Lambda

Delayed Responsiveness: With the pre-cooked batches, any changes or additions 
to the menu require the chefs to wait for the next batch to be ready before 
accommodating them. This introduces delays in providing fresh and customised 
meals to the guests.

Streaming Architecture Patterns and the Journey to Kappa

Have you ever come across CQRS (Command-Query Responsibility Segregation)?

CQRS is a fascinating pattern built around the idea of having distinct models for 
reading (Read model) and writing (Write model) information. Behind this lies 
what is known as the Projection Store.

Today, let's dive into the world of streaming architecture patterns, particularly 
those used to populate the Projection Store in the realm of cash management.

Consumerisation Of Commercial Banking

Gone are the days at iGTB when we solely focused on displaying accounts and 
balances or completing payments. The current era is about the Consumerisation 
Of Commercial Banking. Our iGTB cash management products excel due to the 
rapid data access and smooth transaction and account navigation they offer. The 
initial version of our Projection Store drew inspiration from the renowned 
Lambda architecture, a concept introduced by James Warren and Nathan Marzi. 
But, as with any innovation, issues arose.

This journey from Lambda to Kappa was partly fuelled by an enlightening article 
by Jay Kreps titled "Questioning the Lambda Architecture".

Kappa vs. Lambda:

The Culinary Analogy - Lambda and Kappa represent distinctive data processing 
architectural styles. Let's digest this difference using a relatable foodie analogy:

Lambda Architecture: Think of Lambda as a restaurant where food is cooked in 

1



Resource Inef�iciency: The pre-cooked food might not be consumed entirely, 
leading to potential wastage. Additionally, the chefs have to allocate resources and 
space for storing and managing multiple batches of food.

iGTB's Move to Kappa Architecture

Transitioning to the Kappa approach, we visualised data as an uninterrupted 
stream, doing away with separate processing layers. This data stream's 
introduction brought agility to our system, simpli�ied our stack, and allowed for:

“This transition offers a tremendous advantage as data is ingested from 
various sources”

• Uni�ied Data Architecture: We started treating all data, whether batch or 
real-time, as a continuous stream

• Streamlined Processing Logic: Adapting to Kappa led us to rewrite processing 
logic to suit streaming

• Direct Data Integration: Most batch layers were phased out, with data 
streamed directly into a uni�ied pipeline

• Observability: With the advent of the cloud paradigm, having real-time event 
monitoring and observability became critical, leading to continuous 
performance metrics, ensuring peak ef�iciency and scalability

Where Are We Today?

The Projection Store concept involves storing normalised and de-normalised data 
in a single database, allowing users to access their transactions and navigate 
accounts effortlessly.

“Shift from the Lambda to Kappa architecture signi�icantly improved 
resources ef�iciency”

By storing both forms of data, we achieve a balance between data integrity and 
query performance. Normalised data ensures consistency and reduces 
redundancy, while de-normalised data speeds up data retrieval and enables faster 
queries. With Projection Store, we strike a harmonious chord between data 
normalisation and de-normalisation, providing the best of both worlds. In the
world of event processing, intellect has moved most of its signi�icant architecture 
products to eMACH.ai

Chapter 15

large batches, with one team preparing and another serving the dishes. Though 
this ensures everyone is fed, it's in�lexible. Making any changes can cause delays, 
waiting for the next batch.

Kappa Architecture: Here, there's a constant �low of food prep. Chefs cook in 
real-time, directly serving fresh dishes to diners. This allows instant adaptation to 
any menu changes or last-minute requests.

Both styles make sure everyone gets their meal, but their operational implications 
are starkly different.

The separate teams of chefs and servers follow a predetermined plan for cooking 
and serving food.

Both approaches ensure nobody goes away hungry, the way it is realised in 
Lambda and Kappa have a lot of operational implications.

“Moving to Kappa Architecture eliminates the need for separate batch and 
real-time processing layers”

Kappa

Agility and Customisation: With the ability to cook and serve in real-time, the chefs 
can adapt to changes and additions on the spot. They can accommodate different 
dietary preferences, adjust �lavours, or even create personalised dishes based on 
speci�ic guest requests. This �lexibility enhances the overall dining experience and 
guest satisfaction.

Reduced Waste: Since the food is prepared in smaller portions as needed, there is 
less chance of excess food going to waste. The chefs can focus on optimising 
ingredient usage and avoiding unnecessary leftovers.

Fresher and Timely Service: By eliminating the need for pre-cooked batches, the 
Kappa approach ensures that the food is served immediately after it is cooked. 
This results in fresher and hotter meals being served to the guests, enhancing the 
overall quality of the dining experience.

Real-time Adjustments: The chefs can incorporate feedback from guests and make 
immediate adjustments to enhance the taste, and presentation, or even introduce 
new dishes. This enables continuous improvement and keeps the dining 
experience dynamic and engaging.

Lambda

Delayed Responsiveness: With the pre-cooked batches, any changes or additions 
to the menu require the chefs to wait for the next batch to be ready before 
accommodating them. This introduces delays in providing fresh and customised 
meals to the guests.

Streaming Architecture Patterns and the Journey to Kappa

Have you ever come across CQRS (Command-Query Responsibility Segregation)?

CQRS is a fascinating pattern built around the idea of having distinct models for 
reading (Read model) and writing (Write model) information. Behind this lies 
what is known as the Projection Store.

Today, let's dive into the world of streaming architecture patterns, particularly 
those used to populate the Projection Store in the realm of cash management.

Consumerisation Of Commercial Banking

Gone are the days at iGTB when we solely focused on displaying accounts and 
balances or completing payments. The current era is about the Consumerisation 
Of Commercial Banking. Our iGTB cash management products excel due to the 
rapid data access and smooth transaction and account navigation they offer. The
initial version of our Projection Store drew inspiration from the renowned 
Lambda architecture, a concept introduced by James Warren and Nathan Marzi. 
But, as with any innovation, issues arose.

This journey from Lambda to Kappa was partly fuelled by an enlightening article 
by Jay Kreps titled "Questioning the Lambda Architecture".

Kappa vs. Lambda:

The Culinary Analogy - Lambda and Kappa represent distinctive data processing 
architectural styles. Let's digest this difference using a relatable foodie analogy:

Lambda Architecture: Think of Lambda as a restaurant where food is cooked in 

2



Resource Inef�iciency: The pre-cooked food might not be consumed entirely, 
leading to potential wastage. Additionally, the chefs have to allocate resources and 
space for storing and managing multiple batches of food.

iGTB's Move to Kappa Architecture

Transitioning to the Kappa approach, we visualised data as an uninterrupted 
stream, doing away with separate processing layers. This data stream's 
introduction brought agility to our system, simpli�ied our stack, and allowed for:

“This transition offers a tremendous advantage as data is ingested from 
various sources”

• Uni�ied Data Architecture: We started treating all data, whether batch or 
real-time, as a continuous stream

• Streamlined Processing Logic: Adapting to Kappa led us to rewrite processing 
logic to suit streaming

• Direct Data Integration: Most batch layers were phased out, with data 
streamed directly into a uni�ied pipeline

• Observability: With the advent of the cloud paradigm, having real-time event 
monitoring and observability became critical, leading to continuous 
performance metrics, ensuring peak ef�iciency and scalability

Where Are We Today?

The Projection Store concept involves storing normalised and de-normalised data 
in a single database, allowing users to access their transactions and navigate 
accounts effortlessly.

“Shift from the Lambda to Kappa architecture signi�icantly improved 
resources ef�iciency”

By storing both forms of data, we achieve a balance between data integrity and 
query performance. Normalised data ensures consistency and reduces 
redundancy, while de-normalised data speeds up data retrieval and enables faster 
queries. With Projection Store, we strike a harmonious chord between data 
normalisation and de-normalisation, providing the best of both worlds. In the 
world of event processing, intellect has moved most of its signi�icant architecture 
products to eMACH.ai

large batches, with one team preparing and another serving the dishes. Though 
this ensures everyone is fed, it's in�lexible. Making any changes can cause delays, 
waiting for the next batch.

Kappa Architecture: Here, there's a constant �low of food prep. Chefs cook in 
real-time, directly serving fresh dishes to diners. This allows instant adaptation to 
any menu changes or last-minute requests.

Both styles make sure everyone gets their meal, but their operational implications 
are starkly different.

The separate teams of chefs and servers follow a predetermined plan for cooking 
and serving food.

Both approaches ensure nobody goes away hungry, the way it is realised in 
Lambda and Kappa have a lot of operational implications.

“Moving to Kappa Architecture eliminates the need for separate batch and 
real-time processing layers”

Kappa

Agility and Customisation: With the ability to cook and serve in real-time, the chefs 
can adapt to changes and additions on the spot. They can accommodate different 
dietary preferences, adjust �lavours, or even create personalised dishes based on 
speci�ic guest requests. This �lexibility enhances the overall dining experience and 
guest satisfaction.

Reduced Waste: Since the food is prepared in smaller portions as needed, there is 
less chance of excess food going to waste. The chefs can focus on optimising 
ingredient usage and avoiding unnecessary leftovers.

Fresher and Timely Service: By eliminating the need for pre-cooked batches, the 
Kappa approach ensures that the food is served immediately after it is cooked. 
This results in fresher and hotter meals being served to the guests, enhancing the
overall quality of the dining experience.

Real-time Adjustments: The chefs can incorporate feedback from guests and make 
immediate adjustments to enhance the taste, and presentation, or even introduce 
new dishes. This enables continuous improvement and keeps the dining 
experience dynamic and engaging.

Lambda

Delayed Responsiveness: With the pre-cooked batches, any changes or additions 
to the menu require the chefs to wait for the next batch to be ready before 
accommodating them. This introduces delays in providing fresh and customised 
meals to the guests.

Streaming Architecture Patterns and the Journey to Kappa

Have you ever come across CQRS (Command-Query Responsibility Segregation)?

CQRS is a fascinating pattern built around the idea of having distinct models for 
reading (Read model) and writing (Write model) information. Behind this lies 
what is known as the Projection Store.

Today, let's dive into the world of streaming architecture patterns, particularly 
those used to populate the Projection Store in the realm of cash management.

Consumerisation Of Commercial Banking

Gone are the days at iGTB when we solely focused on displaying accounts and 
balances or completing payments. The current era is about the Consumerisation 
Of Commercial Banking. Our iGTB cash management products excel due to the 
rapid data access and smooth transaction and account navigation they offer. The
initial version of our Projection Store drew inspiration from the renowned 
Lambda architecture, a concept introduced by James Warren and Nathan Marzi. 
But, as with any innovation, issues arose.

This journey from Lambda to Kappa was partly fuelled by an enlightening article 
by Jay Kreps titled "Questioning the Lambda Architecture".

Kappa vs. Lambda:

The Culinary Analogy - Lambda and Kappa represent distinctive data processing 
architectural styles. Let's digest this difference using a relatable foodie analogy:

Lambda Architecture: Think of Lambda as a restaurant where food is cooked in 

Refactoring the Data Projection Store

3




